Questions taken from the WJEC SAMS Paper 1

				<u> </u>
7. (a)	Concave up curve and y-coordinate of minimum = -4 x-coordinate of minimum = -6	B1 B1	AO1 AO1	
	Both points of intersection with x -axis	B1	AO1	
(b)	$y = -\frac{1}{2}f(x)$	B2	AO2	
	If B2 not awarded $y = rf(x)$ with r negative	(B1) [5]	AO2 (AO2)	
0 /->	A Lite	D.4	400	
8. (a) (b)	A kite A correct method for finding $TR(TS)$ $TR(TS) = \sqrt{96}$	B1 M1 A1	AO2 AO3 AO3	
	Area $OTR(OTS) = \frac{1}{2} \times \sqrt{96} \times 5$	M1	AO3	(f.t. candidate's derived value for <i>TR(TS</i>))
	Area OTRS = 2 × Area OTR(OTS)	m1	AO3	
	Area OTRS = 20√6	A1 [6]	AO3	(c.a.o.)
9.	An expression for $b^2 - 4ac$ for the quadratic equation $4x^2 - 12x + m = 0$,		404	
	with at least two of a, b or c correct $b^2 - 4ac = 12^2 - 4 \times 4 \times m$	M1	AO1	
	$b^2 - 4ac = 12^2 - 4 \times 4 \times m$ $b^2 - 4ac > 0$	A1	AO1	
		m1 A1	AO1 AO1	
	(0<) m < 9 An expression for $b^2 - 4ac$ for the quadratic equation $3x^2 + mx + 7 = 0$, with at least two of a , b or c correct	(M1)	AOI	(to be awarded only if the corresponding M1 is not awarded above)
	$b^{2} - 4ac = m^{2} - 84$ $m^{2} < 81 \Rightarrow b^{2} - 4ac < -3$ $b^{2} - 4ac < 0 \Rightarrow \text{ no real roots}$	A1 A1 A1 [7]	AO2 AO2 AO2	

YEAR 1 | MATHEMATICS | WEEK 24 EXAM QUESTIONS MARK SCHEME

10.	(a)	$(\sqrt{3} - \sqrt{2})^5 = (\sqrt{3})^5 + 5(\sqrt{3})^4 (-\sqrt{2})$ $+ 10(\sqrt{3})^3 (-\sqrt{2})^2 + 10(\sqrt{3})^2 (-\sqrt{2})^3$ $+ 5(\sqrt{3})(-\sqrt{2})^4 + (-\sqrt{2})^5$ (If B2 not awarded, award B1 for three or	B2	AO1 AO1	(five or six terms correct)
		(If B2 not awarded, award B1 for three or four correct terms) $(\sqrt{3} - \sqrt{2})^5 = 9\sqrt{3} - 45\sqrt{2} + 60\sqrt{3} - 60\sqrt{2} + 20\sqrt{3} - 4\sqrt{2}$ (If B2 not awarded, award B1 for three, four	B2	AO1 AO1	(six terms correct)
		or five correct terms) $(\sqrt{3} - \sqrt{2})^5 = 89\sqrt{3} - 109\sqrt{2}$	B1	AO1	(f.t. one error)
	(b)	Since $(\sqrt{3} - \sqrt{2})^5 \approx 0$, we may assume that $89\sqrt{3} \approx 109\sqrt{2}$	M1	AO3	(f.t candidate's answer to part (a) provided one coefficient is negative)
		Either: $89\sqrt{3} \times \sqrt{3} \approx 109\sqrt{2} \times \sqrt{3}$	m1	AO3	(f.t candidate's answer to part (a) provided one coefficient is negative)
		$\sqrt{6} \approx \frac{267}{109}$	A1	AO3	(c.a.o.)
		Or $89\sqrt{3} \times \sqrt{2} \approx 109\sqrt{2} \times \sqrt{2}$	(m1)	(AO3)	(f.t candidate's answer to part (a) provided one
		$\sqrt{6} \approx \frac{218}{89}$	(A1) [8]	(AO3)	coefficient is negative) (c.a.o.)

YEAR 1 | MATHEMATICS | WEEK 24 EXAM QUESTIONS MARK SCHEME

16.	$f'(x) = 3x^2 - 10x - 8$	M1	AO1	(At least one non-zero
10.		''''	1	term correct)
	Critical values $x = -\frac{2}{3}$, $x = 4$	A1	AO1	(c.a.o)
	For an increasing function, $f'(x) > 0$	m1	AO1	
	For an increasing function $x < -\frac{2}{3}$ or $x > 4$	A2	AO2 AO2	(f.t. candidate's derived two critical values for x)
	Deduct 1 mark for each of the following errors the use of non-strict inequalities the use of the word 'and' instead of the word 'or'	[5]		
17. (a)	dy .			(At least one non-zero
(5)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3 - 2x$	M1	AO1	term correct)
	An attempt to find the value of $\frac{dy}{dx}$ at $x = 2$	m1	AO1	
	At $x = 2$, $\frac{dy}{dx} = -1$ Equation of tangent at <i>B</i> is	A1	AO1	(c.a.o.)
	y-2 = -1(x-2)	A1	AO1	(f.t. candidate's value for $\frac{dy}{dx}$ at $x = 2$)
(b)	x-coordinate of $A = 3x$ -coordinate of $C = 4$	B1 B1	AO1 AO1	(derived) (derived)
	If <i>D</i> is the foot of the perpendicular from <i>B</i> to the <i>x</i> -axis, area of triangle <i>BDC</i> = 2	B1	AO1	(f.t. candidate's derived x-coordinate of C)
	Area under curve = $\int_{2}^{6} (3x - x^2) dx$	M1	AO3	(use of integration) (f.t. candidate's derived
	$\frac{3x^2}{2} - \frac{x^3}{3}$ Area under curve = $(27/2 - 9) - (6 - 8/3)$	A1 m1	AO3 AO3	x-coordinate of A) (correct integration) (an attempt to substitute limits,
	Shaded area = Area of triangle BDC – Area under curve	m1	AO3	f.t. candidate's derived x-coordinate of A) (f.t. candidate's derived x-coordinates of A and
	Shaded area = 5/6	A1 [12]	AO3	C) (c.a.o.)